Characterization of Free Electron-Deembedded Subgab Density-of-States in a-IGZO TFTs from the Sub-Bandgap Optical Subthreshold Characteristics

Hyojoon Seo, Hagyoul Bae, Chunhyung Jo, Euiyeon Hong, Hyunjun Choi, Jun Seok Hwang, Jaeyeop Ahn , Dae Hwan Kim, and Dong Myong Kim $^{\rm a)}$

School of Electrical Engineering, Kookmin University, Seoul, 136-702 a)dmkim@kookmin.ac.kr

Abstract

An optical differential ideality factor technique (ODIFT) is proposed for extraction of free electron-compensated subgap $(E_V < E < E_C)$ density-of-states (DOS) over the bandgap in amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). In the technique, the differential ideality factors $d\eta(V_{GS})/dV_{GS}$ under dark and photo-illumination under subthreshold bias ($V_{GS} < V_T$) is combined with the sub-bandgap photons ($h \lor < E_g$) to confine photonic excitation of electrons only from the subgap localized states over the bandgap in a-IGZO TFTs. We applied the ODIFT to a-IGZO TFTs with $W \times L=50 \times 25 \ \mu m^2$ and extracted the energy distribution of DOS for the localized states over the bandgap.

1. Introduction

Extraction of the subgap density of states (DOS) g(E) over the bandgap ($E_V < E < E_C$) in amorphous semiconductors is very important in the characterization and modeling of TFTs [1,2] by using capacitance-voltage (C-V), current-voltage (I-V), and other techniques [3,4,5]. They require complicated calculations or cause a drift of inherent properties by the thermal and/or electrical stress during characterization [6].

In this letter, we report an optical differential ideality factor technique (ODIFT) for extraction of g(E) by employing the differential ideality factor $d\eta(V_{GS})/dV_{GS}$ under sub-bandgap optical illumination with photon energy less than the energy bandgap($E_{ph}=hv < E_g$). By employing differential ideality factors under dark and under sub-bandgap photonic excitation, the intrinsic DOS for the localized states is fully separated from the contribution of free electrons especially for the gate bias close to the threshold voltage (V_T).

2. Device fabrication

The fabrication procedure for the a-IGZO TFTs is as follows: On a glass substrate, the first sputtered deposition at RT and patterning of the Mo gate are followed by PECVD of SiN_x and SiO₂ at 370 °C as a gate dielectric thickness ($T_{ox} = 258$ nm). The a-IGZO layer ($T_{IGZO} = 50$ nm) is sputtered at RT in a mixed atmosphere of Ar/O₂ and wet etched with a diluted HF. An etch stopper SiO_x layer is deposited by PECVD at 150 °C and patterned by wet etching. For the formation of the source/drain (*S/D*) electrodes, Mo is sputtered at RT and patterned by dry etching. A passivation layer (SiO_x and SiN_x ; thickness = 100 nm each) is followed by deposition, and finally, the devices are annealed at 250 °C for 1 hr in the furnace. The employed a-IGZO TFTs has $W = 50 \ \mu m$, $L = 25 \ \mu m$ and $L_{ov} = 10 \ \mu m$.

3. Results and Discussion

In order to extract the distribution of DOS g(E), ODIFT employs the differential of the difference in the ideality factor under dark and sub-bandgap photo-illuminated condition based on the subthreshold drain $(I_{D,sub})$ under the gate bias $V_{on} < V_{GS} < V_T$ is described [7] by

$$I_{D,sub} \cong \mu_{eff} C_{ox} \left(\frac{W}{L}\right) (\eta - 1) V_{th}^{2} \exp\left(\frac{V_{GS} - V_{T}}{\eta V_{th}}\right)$$
(1)

with V_{on} as the turn-on voltage, V_T as the threshold voltage, η as the ideality factor, and V_{th} as the thermal voltage, μ_{eff} as the effective mobility, $C_{ox}(=\varepsilon_{ox}/T_{ox})$ as the oxide capacitance per unit area, and W/L as the gate width/length ratio.

In a-IGZO TFTs, the total substrate capacitance (C_S) in the active channel region consists of the capacitance (C_{FREE}) for free electrons in the conduction band, the DOS-induced capacitance (C_{LOC}) for the localized electrons in the subgap states (including both interface and bulk traps), and the photo-induced capacitance ($C_{LOC,ph}$) for the photo-generated electrons pumped from the sub-bandgap photo-responsive energy range in the bandgap as shown in Fig. 1(b).

We note that previous method [8] are does not consider the free electron-induced capacitance (C_{FREE}) in subthreshold region ($V_{GS} < V_T$). Therefore, we now propose the ODIFT, which employs sub-bandgap photons combined with differential ideality factor for separate extraction of the subgap DOS g(E) excluding the contribution from free electrons in a-IGZO TFTs. We note that the ideality factor $\eta(V_{GS})$ is described by [7]

$$\eta_{dark}(V_{GS}) = 1 + \frac{C_{LOC}(V_{GS}) + C_{FREE}(V_{GS})}{C_{ax}}$$
(2)

$$\eta_{ph}(V_{GS}) = 1 + \frac{C_{LOC}(V_{GS}) + C_{FREE}(V_{GS})}{C_{ox}} + \frac{C_{LOC,ph}(V_{GS})}{C_{ox}}.$$
(3)

 V_{T} -independent but V_{GS} -dependent ideality factor $\eta(V_{GS})$ can be experimentally obtained from the subthreshold drain current of a-IGZO TFTs through

$$\eta(V_{GS}) = \left(\frac{\left(V_{GS} + \Delta V_{GS}\right) - V_{GS}}{V_{th}}\right) / \ln\left(\frac{I_{D,sub}(V_{GS} + \Delta V_{GS})}{I_{D,sub}(V_{GS})}\right).$$
(4)

For the ODIFT, we employ V_T -independent but V_{GS} -dependent differential ideality factor $(d\eta(V_{GS})/d(V_{GS}))$ from experimental data [8]. The subgap DOS-induced capacitance $C_{LOC}(V_{GS})$, governed by V_{GS} -dependent localized charges $Q_{LOC}(V_{GS})$, is described by

$$\frac{d(\eta_{ph}(V_{GS}) - \eta_{dark}(V_{GS}))}{dV_{GS}} = \frac{1}{C_{ox}} \left(\frac{dC_{LOC,ph}(V_{GS})}{d\psi_{S}} \cdot \frac{d\psi_{S}}{dV_{GS}} \right) [V^{-1}]$$
(5)

$$\frac{dC_{LOC,ph}(V_{GS})}{d\psi_S} = C_{ax} \frac{d(\eta_{ph}(V_{GS}) - \eta_{dark}(V_{GS}))}{dV_{GS}} / \frac{d\psi_S}{dV_{GS}} [F/V \cdot cm^2]$$
(6)

$$C_{LOC,ph}(V_{GS}) = C_{ox} \int_{\psi_{S}(V_{GS} = V_{os})}^{\psi_{S}(V_{GS})} \frac{d(\eta_{ph}(V_{GS}) - \eta_{dark}(V_{GS}))}{dV_{GS}} / \frac{d\psi_{S}}{dV_{GS}} d\psi_{S} [F/cm^{2}].$$
(7)

For a non-linear mapping of the gate voltage to the energy level over the bandgap, the surface potential ψ_S is converted from the experimental C_G - V_{GS} characteristics through [3,4] and g(E) can be extracted

$$\psi_{S}\left(V_{GS}\right) = \int_{V_{FB}}^{V_{GS}} \left(1 - \frac{C_{G}(V_{GS})}{C_{ox} \cdot W \cdot L}\right) dV_{GS} \left[V\right]$$
(8)

$$g(E) = \frac{\Delta C_{LOC}(V_{GS})}{q^2 T_{IGZO}} \, [\text{eV}^{-1} \text{cm}^{-3}].$$
⁽⁹⁾

The optical source (red, green) is guided over the a-IGZO active layer of the device under characterization through a multimode fiber with a diameter=50 μ m and photon energy ($E_{ph,R} = 1.89$, $E_{ph,G}$ = 2.33 eV < $E_{g,IGZO} = 3.2$ eV, and maximum optical power $P_{opt,R} =$ 9 mW, $P_{opt,G} = 12$ mW).

Fig. 2(a) shows V_T shift and increased drain current under sub-bandgap photo-illumination compared with dark condition and Fig. 2(b) comparatively shows the I_D - V_{GS} under photo-illumination with I_D - V_{GS} and C_G - V_{GS} characteristics at f=10 kHz under dark. V_{GS} -dependent experimental ideality factors ($\eta_{dark}(V_{GS})$ under dark and $\eta_{ph}(V_{GS})$ under sub-bandgap photo-illumination) are shown in Fig. 3(a) and extracted subgap DOS g(E) over the photo-responsive range in the bandgap through the proposed ODIFT is shown in Fig. 3(b) for a-IGZO TFTs. Extracted subgap DOS through the ODIFT with red and green lights are comparatively shown. g(E) from the ODIFT are also compared with those from the multi-frequency *C-V* method (MFM) [4] and DIFT [8].

4. Summary

We proposed the optical differential ideality factor technique for extraction of subgap DOS g(E) in a-IGZO TFTs. By combining the differential ideality factors under dark and sub-bandgap optical illumination, any possible contribution from free carriers in the conduction band is completely removed. The proposed ODIFT is confirmed by applition to a-IGZO TFTs with $W \times L=50 \times 25 \ \mu m^2$ and extracted the energy distribution of DOS over the bandgap. We note that the ODIFT is advantageous over the *C*-*V* techniques for TFTs with small geometrical size suppressing any contribution from the overlapped regions.

References

- [1] H.-H. Hsieh, et al., *Appl. Phys. Lett.*, vol. 92, no. 13, p. 133503, Apr. 2008.
- [2] A. Suresh, et al., Appl. Phys. Lett., vol. 92, no. 3, p. 033502, Jan. 2008.
- [3] M. Kimura, et al., Appl. Phys. Lett., vol. 92, no. 13, p. 133512, Apr. 2008.
- [4] S. Lee, et al., IEEE Electron Devices Lett., vol. 31, no. 3, pp. 231–233, Mar. 2010.
- [5] C. E. Kim, et al., *IEEE Electron Devices Lett.*, vol. 31, no. 10, pp. 1131–1133, Oct. 2010.
- [6] T.-C. Chen, et al., Appl. Phys. Lett., vol. 97, no. 11, pp. 112104-1–112104-3, Sep. 2010.
- [7] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed., New York: Wiley, 2006.
- [8] M. Bae, et al., *IEEE Electron Device Lett.*, vol.33, no. 3, pp. 339-401, March 2012.

Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 2012-0000147) and the CAD softwares were supported by IC Design Education Center (IDEC).

Fig. 1. (a) Energy band diagram for extraction of subgap DOS g(E) in a-IGZO. (b) Capacitance model for the a-IGZO TFT in the subthreshold region.

Fig. 2. (a) Optical power(P_{opt})-dependent I_D - V_{GS} characteristics a-IGZO TFTs. (b) Optically saturated I_D - V_{GS} curves under photo-illumination compared with I_D - V_{GS} under dark and C_G - V_{GS} characteristics at f = 10 kHz under dark.

Fig. 3. (a) V_{GS} -dependent ideality factors under dark $\eta_{dark}(V_{GS})$ and photo-illuminated $\eta_{ph}(V_{GS})$. (b) Subgap DOS g(E) extracted through the ODIFT are compared with those from the DIFT and MFM for the same device on the wafer.