[TF1-I-2]

Sampling time and pH-dependences of SiNW ISFET-based biosensors

Seohyeon Kim¹, Jungmok Kim¹, Hyun-Sun Mo¹, Jung Han Lee², Dong Myong Kim¹,

Sung-Jin Choi¹, Byung-Gook Park², Dae Hwan Kim^{1,2*}, and Jisun Park^{1*}

¹School of Electrical Engineering (EE), Kookmin University, Seoul, Korea

²Inter-university Semiconductor Research Center (ISRC), Seoul National University, Seoul, Korea

*E-mail : Dae Hwan Kim: drlife@kookmin.ac.kr, Jisun Park: jisunpark@kookmin.ac.kr

Si nanowire ion-sensitive field effect transistor (SiNW ISFET) is a promising solution for real-time, label-free, and low cost biosensor. However, the movement of ions in electrolyte causes the delay in trasferring the potential of liquid gate voltage (V_{LG}) into the functionalized surface of SiNW when V_{LG} is swept [1]. Therefore, the real-time output current of ISFET varys depending on a sampling time of readout circuit and the pH concentration as well although V_{LG} and V_{DS} (drain-to-source voltage) are fixed to specific values. It should be considered in establishing ISFET-based biosensor circuit and systems. In this work, the output current of top-down processed SiNW ISFET-based pH sensor [Fig. 1(a)] is investigated with varying the sampling time and pH value of electrolyte.

The sampling time used was controlled by a hold time (T_H) and delay time (T_D) with Agilent 4156C semiconductor parameter analyzer when V_{LG} is swept under a fixed V_{DS} [Fig. 1(b)]. The difference of ISFET current, i.e., denoted by ΔI , depending on varying T_H and T_D is observed to increase with the increase of pH [Fig. 1(c)]. The difference of liquid gate current, i.e., denoted by ΔI_{LG} , depending on varying T_H and T_D is also characterized [Fig. 1(d)]. Finally, the hysteresis as well as ΔI and ΔI_{LG} will be analyzed as the function of parameters, such as pH, T_H, and T_D, and related physical/chemical properties will be also discussed in detail. Our result is potentially useful in improving a signal-to-noise ratio of the biosensor readout circuit and system.

Fig. 1. (a) SiNW ISFET. (b) Used condition of sampling time. The pH-dependences of (c) ΔI and (d) ΔI_{LG} .

Reference: [1] Jungmok Kim, Hyoun Mo Choi, Hyun-Sun Mo, Jung Han Lee, Dong Myong Kim, Sung-Jin Choi, Byung-Gook Park, Dae Hwan Kim, and Jisun Park, MicroTAS, T.449g, 1616 (2015).

Acknowledgment: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (Grant No. 2013R1A1A2065339), in part by BK+ with the Educational Research Team for Creative Engineers on Material-Device-Circuit Co-Design (Grant No. 22A20130000042), and in part by IC Design Education Center (IDEC).